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LETTER TO THE EDITOR 

The sol-gel transition modelled by irreversible aggregation of 
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$ Service de Physique ThCorique, CEN Saclay, 91191 Gif-sur-Yvette, France 

Received 25 March 1985 

Abstract. Irreversible aggregation of clusters leads in a natural way to the formation of 
large ramified structures. We investigate this growth process close to the sol-gel transition, 
where for the first time an infinite spanning cluster appears, and find scaling behaviour. 
The kinetics of the model leads to properties which are distinct from standard percolation. 
Two critical exponents are determined numerically. The fractal dimension of the clusters 
is 0, = 1.75 f 0.07 in two dimensions. 

It has been suggested that the sol-gel transition can be described by standard percolation 
(De Gennes 1976, Stauffer 1979, Stauffer et a1 1982). This approach, however, considers 
neither the growth nor the mobility of the macromolecules (clusters). The approach 
using kinetic equations (Cohen and Benedek 1982, Leyvraz and Tschudi 1983, Ziff et 
a1 1982, Ziff 1980) does consider the growth but takes the limit of infinite mobility. 
Hence it loses information about the local environment and thus it is a mean field 
theory which neglects spatial correlations. The real (experimental) situation with a 
finite mobility depends very much on the growth mechanism. If the growth is governed 
by initiators (additive polymerisation) (Manneville and de Seze 1981, Herrmann et a1 
1982), one knows that the sol-gel transition has universality properties of its own 
(sensitive to the initiator concentration). If the growth is not induced by initiators the 
most common mechanism is polycondensation, which has been studied experimentally 
on macromolecules (Adam et a1 1981, Schmidt and Burchard 1981), on coagulation 
(Wiltzius et a1 1982) and on experimental models (Allain and Jouhier (1983) with wax 
balls on water; Von Schulthess et a1 (1980) with latex-spheres). 

Here we propose a model for irreversible polycondensation. The growth mechanism 
is that of kinetic clustering of clusters (Meakin 1983, Kolb et a1 1983) which has been 
used to describe flocculation. We have determiped the scaling properties numerically 
and conclude that they are distinct from flocculation and from standard percolation. 

The model of kinetic clustering of clusters is defined as follows: No particles (clusters 
of unit mass and diameter) are distributed randomly (no overlap) in a volume V, = Ld 
in d-dimensional space (density po = No/ Vo). If any of these particles touch each 
other, they stick together rigidly and permanently. These clusters now start to move 
randomly and independently (Brownian motion). Each cluster of mass m is assumed 
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to have an  average velocity 

u = m n  

where the parameter a can be chosen at will. A strong short range attraction then lets 
the clusters grow: whenever two clusters of mass m, resp. m2 touch each other, they 
irreversibly form a bond at the point(s) of contact and  thus build a new cluster of 
mass m, + m,, now diffusing with velocity u(ml  + mz) ,  etc. 

In the past, this model has been extensively studied for the case when the distance 
between clusters is much larger than the radius of the clusters (flocculation). Asymptoti- 
cally this corresponds to po + 0. In this paper we will study the opposite limiting case: 
the process is so advanced that the clusters interpenetrate each other and eventually 
an  infinite spanning cluster appears. 

Starting with a finite initial density po there will always be a time t ,  when such an  
infinite cluster appears. This is because the clusters have a fractal dimension D smaller 
than the spatial dimension d and therefore asymptotically the density of each single 
cluster goes to zero. Two cases are possible: t ,  = CD (no gel) or t ,  finite (gel) depending 
on a. It is the aim of this letter to study the critical behaviour of our model around 
t ,  and to compare it with flocculation on one hand and  standard percolation on the other. 

The only true parameter in the model then is a, and it influences the growth in an  
important way. In particular it controls the relative size of the aggregating clusters. 
It is illustrative to consider the limiting situations: for (Y + -CD aggregation of equally 
sized clusters is favoured whereas for a + CT) only the largest cluster moves and grows. 

To better understand the role of a it is useful to recall the mean field approach to 
cluster aggregation: it is given by the Smoluchowski equations 

where N ( m ,  t )  is the number of clusters of size m at time t and the kernel K ,  is the 
probability that two clusters of masses i and j aggregate. If one supposes K,] = (ij)” 
it is known that (2) has qualitatively different asymptotic solutions for w <+ and 
1 > w > f. For w < f (Lushnikov 1973) one has t ,  = a, and N (  m, t )  scales as 

N ( m ,  t )  = m - 2 p ( r n / f e )  

where 8 is related to w through 

e - 1 = 1 - 2 w .  

(3) 

(4) 
For w < 0 the scaling function p ( x )  has a peak and  vanishes for small x.  For 1 > w > f 
(Hendriks et a1 1983) one has t,<a, the scaling behaviour is different and  has a 
monotonically decreasing scaling function. 

For the case of flocculation numerical evidence has been given in Kolb (1984) that 
the Smoluchowski approach describes the scaling behaviour of N (  m, t )  obtained in 
the simulation in d = 2 if one sets 

2 w = l - a  ( 5 )  

for w < 0. However, as the Smoluchowski equation neglects spatial structure, it cannot 
yield the fractal dimension of the clusters. 

In  this letter we want to determine the fractal dimension in the gelation regime 
and investigate if the scaling behaviour of N ( m ,  t )  is also described by the 
Smoluchowski equation. 
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We present a simulation of the model under the same conditions as in Kolb et a! 
(1983), considering growth on a square lattice with periodic boundary conditions. The 
clusters move one lattice spacing at a time and  stick together when they are nearest 
neighbours. Rotation of the clusters is neglected as seems justified for the asymptotic 
exponents for slow enough rotations (Meakin, unpublished). In figure 1 snapshots of 
the system at po = 0.25 are shown for different stages of the growth (or times). 

( 0 1  ( b l  (c l  

Figure 1. Simulation of kinetic cluster growth at different stages ( L =  128, p o = 0 . 2 5 ) ;  ( a )  
initial stage, ( b )  scaling region, and ( c )  past the gel point (when the largest cluster spans 
the system). 

We will define the time t as follows: at the beginning we set t = 0. We randomly 
choose a cluster and move it with a probability proportional to U = mu, where m is 
the mass of the chosen cluster. Simultaneously we increment the time by A t  = N- ' (  t ) ,  
where N ( t )  is the actual number of clusters in the box before the move. Thus one 
time unit is one Monte Carlo step per cluster. 

First we want to show the results for the effective fractal dimension D, of the 
clusters in the asymptotic region close to t, (see, e.g., figure l ( b ) ) .  Numerically we 
define the gel time as the moment when the largest cluster attains the system size in 
either the x or  the y direction. 

At a given time we pick out the largest cluster in the box and calculate its radius 
of gyration R and its mass m. By doing this for 20 samples an  average R and m are 
obtained for each time. In figure 2 we plot R logarithmically against m for t < t, and 
several choices of po and CY. Irrespective of the exponent CY, equation ( l ) ,  to within 
the error bars the points lie on straight lines of equal slope 0.57. This yields D,= 
1.75k0.07. The dependence on po is slight for the large po that we have chosen. If 
po<< 1 one would expect to see a crossover phenomenon to flocculation, where D,= 
1.42i0.05. The remarkable feature of our result is that the fractal dimension D, is 
noticeably distinct not only from that of flocculation clusters but also from D, = 3 = 1.89 
the fractal dimension of the percolation clusters at the percolation threshold p c =  
0.592 7 5 .  

For the present model, the density po cannot exceed pc,  as for po = p c  the initial 
configuration already contains on average a percolating cluster whose properties are 
not determined by the kinetic process any longer. 

Three technical points concerning figure 2 are interesting to note. 
(1) The finite size effects at L =  150 are not very strong as can be seen from figure 

2 where the results for L=90  are also shown. 
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Figure 2. Radius R against mass m (log-log) of the largest cluster for a = -4 ( O ) ,  a = -2 
( x )  and a = 0 ( +  ), all for L = 150 and po = 0.25. The conclusions are insensitive to L and 
po, as illustrated by the results for a = -2, L = 150 and po = 0.37 (3) resp. a = -2, L = 90, 
po = 0.25 (*). The arrow indicates gelation (the largest cluster spans the system). For better 
distinction, the curves are shifted vertically. 

(2) It is also possible to obtain D, not only through the largest cluster but also by 
looking at  the relation between the average radius and average mass of all the clusters 
at  a given time, giving each cluster the same weight. We have also analysed this second 
method. The D, obtained in this way is the same as the one obtained in figure 2 .  

(3) We also distributed the initial particles not randomly but in a regular way (on 
equidistant sites). This does not change the results either. 

Next, we will analyse the cluster size distribution function N (  m, 1 )  which tells how 
many clusters there are of mass m at time 1. Previous work on flocculation (Kolb 
1984) has shown that N ( m ,  t )  scales as 

N ( m ,  f )  = N2(f)/NoP(” (6) 

where m = No/ N (  t )  is the average mass of a cluster. 
This scaling behaviour is also valid here as we can see from figure 3 where 

the scaling function p ( x )  is shown as a function of x = m / m  for several values of 
po and a. 

The curves are obtained just before the gel point t,, i.e. before the largest cluster 
spans the system. They depend on a but not on po. For a = -2 and -4, the functions 
p ( x )  peak at finite values x,,,=0.50 and x,,,=O.68 respectively and fall off very 
rapidly as x + 0. The vanishing of p ( x )  for x -+ 0 is very different from two dimensional 
percolation. As will be discussed below, this result can be understood when comparing 
the present model with the mean field approach using the Smoluchowski equation 
(equation (2) )  (Kolb 1984). 
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Figure 3. Scaling function of the cluster size distribution p ( x )  = m /  N N ( x A )  in the scaling 
region where it is time independent. The curves correspbnd to a = -4 (O), a = -2 ( X )  

and a = 0 ( +  ) and L = 150, po = 0.25. For a = 0 we show also po = 0.50 ( A ) .  

The moments of N ( m ,  t )  are expected to show some singular behaviour at t,. We 
analyse the first moment f i (  t ) .  For t, = 00 (no gelation), we expect 

with 6 2 0  and for t ,  finite we expect 

with 6 2 0. We call 6 the dynamic exponent (because of the time 1 involved). This 
dynamical exponent is more difficult to determine than the exponent D, due to the 
difficulty of reliably estimating the gel time t,. For the values of a = 0, -2 and -4 we 
always find 6 > 0, i.e. t ,  = 00. We have analysed the average mass f i (  t )  and the mass 
of the largest cluster m( t )  as a function of t and  found that 61 and m are proportional 
to each other for t +CO. In  figure 4 we show the mass m of the largest cluster double 
logarithmically as a function of t. We find a power law dependence like that of ( 7 )  
and the exponents are: 8 = 1.55 * 0.15 for a = 0, 8 = 0.42 i 0.07 for a = -2 and 8 = 
0.21 kO.03 for a = -4. The a dependence of 8 can be described within our error bars 
by 

(9) = e- ' (a  = 0) - a. 

If we set in the Smoluchowski approach 

in analogy to ( 5 ) ,  we obtain (9) from (4) if a. is chosen to be ao= K ' ( a  = O ) .  The 
case 6 2 0 corresponds to CY < cyo. We find numerically a. = 0.61 * 0.12 by localising 
the value of ao-  1 for which the scaling function p ( x )  changes its behaviour from a 
divergence at small x to zero at small x. 

The description of our process by the Smoluchowski equation (2) is reinforced by 
the study of the form of the scaling function p ( x )  (figure 3). We find that for a < cyo - 1, 
i.e. w (0, p ( x )  is bell shaped while for a > cyo- 1, i.e. w > O  the function p ( x )  is 
monotonic. This agrees with the results from the Smoluchowski equations. In addition 
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Figure 4. Plot of m against f for the largest cluster (log-log) from which the a-dependent 
dynamic scaling exponent m - t ( 7 )  is determined. The parameters are a = -4 (e), a = -2 
( x ) ,  a = 0 ( + ) and a = 1 (0) with L = 150, p o  = 0.25. Gelation is indicated by the arrows. 
The results suggest that gelation occurs in a finite time for a = 1. 

we find that for a = 1 the behaviour of the growth is qualitatively different from the 
case a s 0: t ,  is finite as illustrated in figure 4. This is consistent with the prediction 
of the Smoluchowski equation that for w > (i.e. a > ao, (10)) a different, percolation- 
type behaviour is expected. 

Unfortunately, for a > 1 the analysis is numerically more difficult. Still we can 
establish the result that the mean mass m and the mass of the largest cluster m are no 
longer proportional to each other as a function of time. This resembles the behaviour 
of random percolation. 

The present model which is based on irreversible cluster-cluster aggregation has 
been used to describe the sol-gel transition of polycondensation type. The scaling 
behaviour of the cluster-size distribution (figure 3) and the value of the fractal dimension 
of the gel are clearly distinct from random percolation for a < ao. Based on our  
numerical results, we suggest that the asymptotic behaviour of the cluster size distribu- 
tion N (  m, t )  and its moments (say the average mass f i ( t ) )  can be described qualitatively 
by the Smoluchowski equation: for a < ao(w  < 4) one finds that the gel time is infinite 
and the scaling properties of the average over all clusters and of the large clusters are 
the same (Kolb 1984). In this case p ( x ) ,  ( 6 ) ,  vanishes at zero argument as for aerosols 
and one-dimensional percolation (Stauffer lq79). For a > a,,, gelation occurs in a 
finite time and  averages over all the clusters behave differently from averages over the 
large clusters (percolation). 

It is now very interestingto investigate to what extent the experiments can reproduce 
the exponents and scaling laws predicted by our kinetic model. For instance our  
models may describe to a good extent the macroscopic experiment of Allain and 
Jouhier (1983) ; this connection is supported by the agreement in the fractal dimensions. 

We acknowledge continuing interest in this project by R Botet, R Jullien and K A 
Penson. D Stauffer is acknowledged for many critical comments. M K  has benefited 
from the support from the Deutsche Forschungsgemeinschaft. We thank H Cornille 
for a critical reading of the manuscript. 
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